Feasibility Based-Large Margin Nearest Neighbor Metric Learning
نویسندگان
چکیده
In the area of data classification, one of the prominent algorithms is the large margin nearest neighbor (LMNN) approach which is a metric learning to enhance the performance of the popular k-nearest neighbor classifier. In principles, LMNN learns a more efficient metric in the input space by using a linear mapping as the outcome of a convex optimization problem. However, one of the greatest weak points of LMNN is the strong reliance of its optimization paradigm on how the neighboring points are chosen. In this paper, it is mathematically proved for the first time that the regular way of choosing the target points can lead to non-feasible optimization conditions regardless of the number of chosen neighboring points. We present a mathematical approach to categorize the target points into feasible and infeasible exemplars, an also we provide a feasibility measure for preference of the target candidates. In our proposed Feasibility Based-LMNN algorithm, we use the above clue to construct the optimization problem based on the most promising general mapping directions in the input space. Our empirical results shows that via using the proposed FB-LMNN approach the optimization problem will converge in a better optimum point, and therefor leads to better classification on the well-known benchmark datasets
منابع مشابه
Two dimensional Large Margin Nearest Neighbor for Matrix Classification
Matrices are a common form of data encountered in a wide range of real applications. How to efficiently classify this kind of data is an important research topic. In this paper, we propose a novel distance metric learning method named two dimensional large margin nearest neighbor (2DLMNN), for improving the performance of k-nearest neighbor (KNN) classifier in matrix classification. Different f...
متن کاملMahalanobis Distance Learning for Person Re-identification
Recently, Mahalanobis metric learning has gained a considerable interest for single-shot person re-identification. The main idea is to build on an existing image representation and to learn a metric that reflects the visual camera-to-camera transitions, allowing for a more powerful classification. The goal of this chapter is twofold. We first review the main ideas of Mahalanobis metric learning...
متن کاملDistance Metric Learning for Large Margin Nearest Neighbor Classification
We show how to learn aMahanalobis distance metric for k-nearest neighbor (kNN) classification by semidefinite programming. The metric is trained with the goal that the k-nearest neighbors always belong to the same class while examples from different classes are separated by a large margin. On seven data sets of varying size and difficulty, we find that metrics trained in this way lead to signif...
متن کاملConvergence of Multi-pass Large Margin Nearest Neighbor Metric Learning
Large margin nearest neighbor classification (LMNN) is a popular technique to learn a metric that improves the accuracy of a simple knearest neighbor classifier via a convex optimization scheme. However, the optimization problem is convex only under the assumption that the nearest neighbors within classes remain constant. In this contribution we show that an iterated LMNN scheme (multi-pass LMN...
متن کاملLarge Margin Nearest Neighbor Classification using Curved Mahalanobis Distances
We consider the supervised classification problem of machine learning in Cayley-Klein projective geometries: We show how to learn a curved Mahalanobis metric distance corresponding to either the hyperbolic geometry or the elliptic geometry using the Large Margin Nearest Neighbor (LMNN) framework. We report on our experimental results, and further consider the case of learning a mixed curved Mah...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1610.05710 شماره
صفحات -
تاریخ انتشار 2016